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In the technique of x-ray photon correlation spectroscopy (XPCS)  a coherent or 

partially coherent beam of x-rays illuminates a sample, and the resulting scattering 
pattern is modulated by a random speckle pattern.  The speckles vary in time as the 
sample undergoes thermal fluctuations.  Time autocorrelation of the speckle pattern 
yields information on the dynamics of a sample.   

The first practical XPCS measurements were made  in 1995 at the ESRF and 
NSLS 1,2.  Since then  the technique has been extensively developed both at the APS and 
ESRF and applied to a wide range of systems including, latex colloids 3 4  ferro-fluids5, 
polymer blends6, surfaces7 8 9 spinodal decomposition of glasses 10 and composition 
fluctuations in metal alloys1.  Measurements to date have studied either slow dynamics in 
glassy systems, or fast dynamics for very strongly scattering systems.  New refinements 
in x-ray optics, and detector technology should permit future measurements on faster 
systems at shorter lengths, opening up the particularly exciting possibility of measuring 
the dynamics of biologically relevant material in aqueous solution.  

Key to performing XPCS measurements is a partially coherent x-ray beam. The 
beam coherence has two components, transverse and longitudinal. For a source with an 
approximately Gaussian intensity distribution, the transverse coherence lengths depend 
on the source size, and source to sample distance: , ,/ 2x z x zRξ λ σ= π . Here, ξ is the 
coherence length at the sample in the x or z direction, λ the x-ray wavelength, R the 
sample to detector distance and σ is the Gaussian sigma of the source dimensions in the x 
or z direction.  (assuming the y-axis lies along the beam). The longitudinal coherence 
length is given by ( / )E EλΛ ≈ ∆ . Here, E is the energy of the x-ray beam and ∆E the 
band pass.   

When the x-ray path length differences for all scattering events in the sample are 
smaller than the relevant coherence length, then the sample will give rise to a speckle 
pattern.  This can typically be achieved by putting an aperture in front of the sample 
whose dimensions are comparable to the longitudinal coherence length (typically ~20 
µm) and  keeping the sample thickness small enough so that the scattering path length 
difference does not exceed the longitudinal coherence length.  An example of a speckle 
pattern from a static scatterer (silica aerogel) is shown in figure 1. 

  



Figure 1.  Coherent scattering pattern from a silica aerogel. 
Dynamics in a sample can be probed by performing a time correlation of the 

intensity within a single speckle of the scattering pattern.  In the case of a CCD detector, 
many correlation functions can be measured simultaneously and then averaged. 11 A 
typical fluctuation pattern for scattering from a dilute colloidal system, and its 
corresponding correlation function are displayed in figure 2.   The intensity-intensity 
correlation function defined by 2

2 ( , ) ( , ) ( , ) /g Q I Q t I Q t Iτ = +τ , can be related to the 

dynamic structure factor of a sample via the relation [ ]2( , ) / ( ,0)S Q S Qτ β τ2 ( , ) 1g Q = +

( )

.  
The dynamic structure factor measures the fluctuations of the density within the sample 
and is defined via ( )( , ) 0,0 ,iQ r

e ee rτ ρ ρ⋅= ∫S Q d rτ
ur rur r r

, with ρe, the electron density.  

 
Figure 2.  Intensity fluctuations from a speckle in the scattering pattern of a colloidal suspension, 

and its corresponding correlation function. 
Consider the relatively simple example of the diffusion of a colloidal particle 

through a fluid (e.g. Brownian motion).  In this case the normalized dynamics structure 
factor is an exponential decay;

2

( , ) / ( ,0) ( , ) DQS Q S Q f Q e ττ τ −≡ = . Here D is the particle 
diffusion coefficient. For dilute colloidal suspensions 4 this form provides an excellent fit 
to the correlation functions, with the correct time constants.  For more complicated 
systems the exponential form is often valid with a different Q dependence.  Other 
behavior such as stretched exponentials, two exponentials decays or more complicated 
forms of the correlation function appear when the systems become densely packed and 
particle motions interfere.   
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